Is it possible to create a biodegradable wing using foldable mechanisms to create net-positive lift?

> Team 3: BIRB (Biodegradable Inspired Robotic Bird) Chris Breaux, George Muhn, and Lien White

Current Specifications

- Bio-Inspiration
- Updated Specifications
 - No new specifications
 - No extreme changes in kinematics, other than switching to a single motor.

Specifications	
Wing Radius	0.4 m
Chord Length	0.2 m
Flap Frequency	2 Hz
Robot Mass	500g
Flap ROM	45 deg
E.E Force	9.81 N
Power Consumption	23 W

Downward Beat Analysis		
End Effector Force	-9.81 N * Ny	
Motor Torque	-0.18Nm	
End Effector Velocity	-1.26 m/s * Ny	
Motor Velocity	-6.28 rad/s	
Total Power Draw	12.32 W	

Dynamics

- Valid initial condition
 - Fully extended lower arm
 - 45° lower arm
- Single torque input lower base joint
- 180° angle limiter lower passive joint
- Aerodynamic drag
 - Flat plate model
 - Applied at com
- Two compliant links lower arm
- Joint stiffness and damping
- Time-varying parameters
 - Torque input
 - Angle limiter stiffness
 - Fixed to test stand

Data Collection

- 1. Prototyping:
 - 1.1. Changed lengths and widths of prototype, allowed for better range of motion and a better desired path.
- 2. Tracker simulation:
 - 2.1. The tracker set up and video was pretty straight forward. Set up two different ways, first as a wing attached to wall, this had problems as it would run into the wall and produce bad results. Second, as a pendulum to allow for better data collection.
 - 2.2. Tracker data collection 2+ hour for each point with constant checking for correct template matching.
- 3. Data Analysis:
- 3.1. UNABLE to find b and k values. Despite working code and adjusting the dynamic model to match the tracker sim it still took 24+ hours with multiple adjustments and running multiple types of optimization.
- 4. Cantilever beam test
- E = P*l3/(3**(b*h3/12)) =**17800403.23N/m3**
- 5. Data Collection integration
- 5.1. We ran multiple models and tests in order ro find the best fit b and k models we are also in the process of evaluation the Young's modulus and comparing our calculated number vs a online source

Future Plans

- Continue running optimization to fit values for b and k.
- Validate Young's modulus from cantilever beam test with literature
- Experimentally validate parameters we calculate
- Continue to refine the prototype for better performance and integrate the electronics and actuators.

